logo
Первоисточники / Мангейм Д

Измерения для порядковых переменных

Когда мы имеем дело с данными порядкового уровня, у нас несколько больше информации, поскольку коды представляют не только категоризацию, но и относительные позиции, или ранжирование. Выбор способа измерения средней тенденции и дисперсии должен как отражать этот факт, так и использовать его возможности. Наиболее подходящий способ измерения средней тенденции для порядковых данных – медиана.Медиана– это просто [c.398] значение среднего признака в упорядоченном ряду, признака, до и после которого находится равное количество признаков. Вычисление медианы, таким образом, требует лишь того, чтобы отсчитать с обоих концов частотного распределения равное количество признаков, до тех пор пока не доберемся до срединного, и определить затем его значение. Там, где имеется нечетное количество признаков, можно определить единственный срединный признак (например, для 99 признаков 50-я от любого конца частотного распределения единица будет иметь 49 единиц как до, так и после себя). Значение этого признака и будет медианой.Если же N (количество единиц) – четное число, появятся две срединных единицы (например, для 100 единиц 50-я и 51-я вместе составят середину распределения). Если обе эти единицы имеют одно и то же значение, оно и будет медианой. Если у них разные значения, медианой будет среднее арифметическое между ними. Поясним на примере. Давайте рассмотрим распределение уровней образования по трем массивам данных (см. табл. 14.2).

Таблица 14.2.