Измерение средней тенденции и дисперсии
Для описания распределения признаков по значениям одной переменной используют два типа статистических процедур. Первый – измерение средней арифметической величины признака – помогает нам выявить наиболее типичные значения, одно или несколько, которые наилучшим способом представляют весь комплекс признаков по этой переменной. Вообразите, что нам сказали, будто так называемый средний американец – это “синий воротничок”, получивший среднее образование и вместе со своей женой имеющий в среднем 1,7 ребенка. Понятно, что не каждый американец отвечает этим требованиям, но если бросить на американцев этакий общий взгляд, то приведенный набор характеристик может оказаться весьма близким к тому общему впечатлению, которое у нас сложится. Вот именно такое представление об усредненном или типичном случае мы получаем приизмерении средней арифметической величины. И именно это измерение было использовано при выявлении наиболее типичных свойств американцев.
Однако, как уже отмечалось, не все американцы обладают такими характеристиками. Многие являются “белыми воротничками”, либо специалистами, либо даже безработными, некоторые закончили только начальную школу, у других – более высокое образование, иные имеют 10 или 20 детей, другие же не женаты и детей не имеют. Иными словами, “типичный” американец представляет лишь среднюю тенденцию внутри совокупности, но не отражает точно каждый отдельный признак. Ну, а поскольку такой типичный признак найден, мы вправе задать вопросы:
“Насколько это типично? Насколько правильно эти усредненные признаки отражают распределение свойств всех единиц массива по данной переменной?” Мы ответим на них, если используем другой тип статистических расчетов –дисперсию. Измеряя дисперсию, мы узнаем, как колеблется (варьирует) отклонение от того среднего значения, которое мы нашли, в каких случаях можно быть уверенным, что наше среднее значимо, и не является ли отклонение [c.394] настолько большим, что наиболее типичный признак на самом деле не является репрезентативным для всей совокупности.
В связи с этим возникает важная проблема, которую дует обсудить, прежде чем двигаться куда-либо дальше. Статистика – это могучее средство анализа; она можно сказать о наших данных гораздо больше, чем можно выявить любым другим путем. Но сама по себе статистика бездумна. Можно произвести любые статистические счеты на любом массиве данных и, казалось бы, выжать из данных все до последней капли. Однако многие из этих “результатов” по двум причинам могут оказаться бессмысленными. Первую причину мы уже обсуждали, логика ее станет яснее по мере дальнейшего продвижения. Говоря проще, уровень сложности анализа может превосходить уровень сложности, заложенный в данных. Если выбранный нами метод требует сложить две цифры, а данные основаны на номинальной шкале, для которой неприемлема сама концепция сложения, то вообще-то механически можно сложить значения двух кодов, однако результат этого окажется бесполезным. Так, если код 1 представляет рабочих – “синих воротничков”, код 2 – “белых воротничков”, а 3 – специалистов, то мы, конечно, можем к ому прибавить два и получить три, но неужели мы действительно будем утверждать, что один рабочий – “синий воротничок” плюс один рабочий – “белый воротничок” равны одному специалисту? Конечно, нет.
Другая причина, по которой результаты статистические расчетов могут оказаться незначимыми, –это то, что одна статистика сама по себе часто не может представить всю картину целиком. Если единственный наиболее типичный уровень образования американцев – это средняя школа, но только 25% всего населения достигли этого уровня и остановились на нем, то насколько много в действительности может сказать нам это среднее значение? Не так уж много. И много ли вы знаете людей, которые действительно имеют 1,7 ребенка? Таким образом, хотя мы можем точно подсчитать и представить эти цифры, нельзя останавливаться только на них. Каждое измерение средней арифметической должно быть взвешено или оценено сопутствующим измерением дисперсии. И еще (мы обсудим это позже): всегда, когда мы имеем дело с [c.395] расчетами, каждое измерение взаимосвязей между двумя переменными следует сопровождать измерением статистической значимости, т.е. следует обозначить, насколько точно найденные величины представляют существенные связи между данными переменными. Таким образом, статистические расчеты должны не только соответствовать уровню измерений данных, но и быть существенно значимыми, если мы хотим получить от них максимум пользы.
Любое измерение средней тенденции и дисперсии основано на общей оценке градаций переменных и единиц массива, которая называется частотным распределением.Частотное распределение– это упорядоченный подсчет количества признаков по каждому значению какой-либо переменной. Представьте, например, что мы задали 100 респондентам вопрос об их занятии в настоящее время и затем распределили их ответы по типам. Тогда частотное распределение для переменной “тип занятий” может выглядеть так, как это показано в табл. 14.1.
Таблица 14.1.
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания вступительная статья
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания предисловие
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- Введение
- 1. Процесс исследования
- Формулирование теории
- Операционализация теории
- Выбор адекватных методов исследования
- Наблюдение за поведением
- Анализ данных
- Интерпретация результатов
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания подготовка к исследованию
- 2. Создание теории: понятия и гипотезы в политологии
- Что такое теория?
- Логика построения теории
- Компоненты теории
- Проверка и совершенствование теории
- Роль гипотез
- Формулирование гипотез
- Заключение
- Дополнительная литература к главе 2
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 3. От абстрактного к конкретному: операционализация и измерение
- Операционализация: связь между теорией и наблюдением
- Операционные определения
- Измерение
- Уровни измерения
- Рабочая гипотеза
- Ошибка измерения
- Валидность
- Типы валидизации
- Надежность
- Заключение
- Дополнительная литература к главе 3
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 4. Работа по плану: как составить программу исследования
- Цель и программа исследования
- Учет в программе исследования альтернативных конкурирующих гипотез
- Экспериментальные программы исследования
- Программа классического эксперимента
- Программа эксперимента с двумя контрольными группами, разработанная р.Соломоном
- Программа эксперимента с двумя контрольными группами, разработанная р.Соломоном
- Формирование групп
- Полевые эксперименты и неэкспериментальные программы
- Квазиэкспериментальные программы
- Выбор программы исследования
- Факторы, угрожающие валидности
- Факторы, угрожающие внутренней валидности
- Факторы, угрожающие внешней валидности
- Дополнительная литература к главе 4
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 5. Кто, что, где, когда: проблема выборки
- Репрезентативная выборка
- Процедуры формирования репрезентативной выборки
- Установление необходимого объема выборки
- Краткие характеристики выборок разного объема
- Заключение
- Дополнительная литература к главе 5
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания методы сбора данных
- 6. Опрос
- Этапы проведения опроса
- Концептуализация
- Подготовка инструментария
- Планирование опроса и построение выборки
- Проблемы, связанные с финансированием опроса
- Обучение и инструктаж персонала
- Предварительное тестирование
- Проведение опроса
- Наблюдение за ходом опроса (мониторинг)
- Контрольная проверка
- Вторичный анализ данных опроса
- Дополнительная литература к главе 6
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 7. Интервьюирование
- Выборочное интервьюирование
- Формулирование вопросов
- Отбор интервьюеров
- Направленное интервьюирование
- Методика направленного интервьюирования
- Специализированное интервьюирование
- Дополнительная литература
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 8. Шкалирование
- Построение шкалы: две основные проблемы
- Шкалирование по лайкерту
- Шкалирование по гуттману
- Шкалирование по тёрстоуну
- Метод семантического дифференциала
- Дополнительная литература
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 9. Контент-анализ
- Подготовка к контент-анализу
- Проведение содержательного контент-анализа
- Проведение структурного контент-анализа
- Некоторые проблемы, возникающие в ходе контент-анализа
- Дополнительная литература к главе 9
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 10. Источники и применение сводных данных
- Типы сводных данных
- Проблемы, связанные с использованием сводных данных
- Источники сводных данных
- Сбор сводных данных
- Заключение
- Дополнительная литература к главе 10
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 11. Поверх границ: практика сравнительных исследований
- Выявление “кочующих” вопросов
- Поиск эквивалентной меры
- Отбор стран для изучения
- Отбор независимых наблюдений
- Отбор материала
- Заключение
- Дополнительная литература к главе 11
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания обработка данных
- 12. Подготовка и обработка данных
- Кодирование: что все эти цифры значат?
- Книга кодов и кодировальный бланк
- Макет кодировки для исследования “Информационные агентства о некоторых странах”
- Как обработать данные
- Дополнительная литература
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 13. Описание данных: построение таблиц, диаграмм, гистограмм
- Перечневая таблица
- Голоса белых и чернокожих избирателей, поданные за демократов в 1960 - 1976 гг., % *
- Линейная диаграмма
- Секторная диаграмма и гистограмма
- Двусторонняя гистограмма
- Расовые различия на президентских выборах 1964 г., %
- Расовые различия на президентских выборах 1972 г., %
- Некоторые предостережения
- Дополнительная литература
- Далее 14. Статистика I: анализ одномерных распределений к оглавлению примечания
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 14. Статистика I: анализ одномерных распределений
- Измерение средней тенденции и дисперсии
- Частотное распределение: типы занятий респондентов
- Измерения для номинальных переменных
- Измерения для порядковых переменных
- Уровни образования по трем массивам
- Измерения для интервальных переменных
- Заключение
- Дополнительная литература
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 15. Статистика II: изучение взаимосвязей между двумя переменными
- Измерение связи и статистической значимости
- Измерение связи и значимости для номинальных переменных
- Определение партийности на основании партийной принадлежности отца (1)
- Определение партийности на основании партийной принадлежности отца (2)
- Определение партийности на основании партийной принадлежности отца (3)
- Значения, используемые для получения χ2
- Измерение связи и значимости для порядковых переменных
- Обобщенная таблица взаимной сопряженности признаков
- Измерение связи и значимости для интервальных переменных
- Значения, используемые для вычислений по уравнению регрессионной прямой
- Значения, используемые при определении коэффициента корреляции (r)
- Заключение
- Дополнительная литература
- Далее: 16. Статистика III: изучение взаимосвязей между несколькими переменными к оглавлению примечания
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 16. Статистика III: изучение взаимосвязей между несколькими переменными
- Анализ таблиц
- Соотношение между получением образования в колледже и политическим мировоззрением
- Гипотетические отношения между получением образования в колледже и политическим мировоззрением для мужчин
- Гипотетические отношения между получением образования в колледже и политическим мировоззрением для женщин
- Множественная регрессия
- Интерпретация результатов множественной регрессии
- Решение общих проблем множественной регрессии
- Анализ временных рядов
- Заключение
- Дополнительная литература
- Далее: 17. Математическое моделирование к оглавлению примечания
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 17. Математическое моделирование
- Процесс моделирования
- Зачем нужны модели?
- Примеры математических моделей политического поведения
- Другие типы моделей
- Сложности, связанные с моделированием
- Заключение
- Дополнительная литература
- Далее: 18. Некоторые обобщения к оглавлению примечания
- Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания
- 18. Некоторые обобщения
- Разработка гипотезы, измерения и программы исследования
- Сбор и анализ данных
- Контрольный бланк для оценки исследований
- Контрольный бланк для оценки исследования
- Заключение
- К оглавлению Примечание