logo
Первоисточники / Мангейм Д

Обобщенная таблица взаимной сопряженности признаков

Значения независимой переменной

Значения зависимой переменной

низкие

средние

высокие

Низкие Средние Высокие

a d g

f e h

c f i

Для того чтобы измерить связь между этими двумя переменными, необходимо определить количество соответствий и инверсий, относящихся к каждой ячейке таблицы. [c.424] Соответствия расположены во всех ячейках под (по направлению к более высоким значениям независимой переменной) и справа (по направлению к более высоким значениям зависимой переменной) от любой определенной ячейки. Так, соответствия относительно случаев ячейки о включают все случаи в ячейках e, f, h и i, поскольку эти случаи имеют более высокие ранги, чем случаи ячейки a по обеим переменным. Инверсии расположены во всех ячейках под (по направлению к более высоким значениям независимой переменной) и слева (по направлению к более низким значениям зависимой переменной) от любой определенной ячейки. Так, инверсии относительно случаев ячейки с включают все случаи в ячейках d, е, g и h поскольку это случаи более высоких по сравнению с ячейкой с значений по одной переменной и более низких – по другой. Частота соответствий (fа в уравнении), таким образом, для каждой ячейки есть сумма всех случаев по каждой ячейке, умноженных на количество случаев во всех ячейках ниже и справа (a[e+f+h+i]+b[f+i]+e[i]). Частота инверсий (fi в уравнении) – это сумма всех случаев по каждой ячейке, умноженная на количество случаев во всех ячейках ниже и слева (b[d+g]+c[d+e+g+h]+f[g+h]). Полученные значения просто подставляются в уравнение.

fa= 45(23+5+2+5)+5(5+5)+2(2+5)+23(5) = 1575+50+14+115 = 1754fi= 5(2+3)+10(2+23+3+2)+23(3)+5(3+2) = 25+300+69+25 = 419

Эта цифра говорит о том, что во взаимном расположении двух переменных на 61% больше соответствий, чем несоответствий. Если fi превышает fа,G будет иметь отрицательный знак, что означает наличие инверсионного типа взаимосвязей.

Проверка статистической значимости коэффициента основана на том факте, что распределение G в выборке из совокупности, где нет значимых связей, приближается к нормальному, так же как распределение гипотетического коэффициента в выборке, которую мы обсуждали раньше. Если это так, то мы можем проверить, не является ли [c.425] любое конкретное значение G следствием случайности, путем вычисления его стандартной оценки (z), определения ее расположения под нормальной кривой и оценки таким образом этой возможности. Целиком подсчет zG(стандартной оценки гаммы) здесь не будет представлен, поскольку формула сложна и ее понимание требует более детального знания статистики по сравнению с уровнем нашей книги. Некоторые сведения о формуле можно найти в книге Фримана (см. прим. 1), и ее подсчет предусмотрен такими пакетами прикладных программ, как SPSS. Достаточно сказать, что когда G превышает ±1645 (когда G удалена от медианы на 1645 единиц стандартного отклонения), G достаточна, чтобы иметь доверительный уровень в 0,05, а если zg превышает ±2326 (когда G удалена от медианы в том или ином направлении на 2326 единиц стандартного отклонения), G достигает значимости на уровне 0,01. Интерпретация этих результатов та же, что в приведенном выше, более общем примере. [c.426]