logo search
Первоисточники / Мангейм Д

Уровни образования по трем массивам

Код

Значение

Массив 1 (N)

Массив2 (N)

Массив 3 (N)

1 2 3 4 5 Общее количество

Начальная школа Незаконченное среднее Законченное среднее Высшее Наличие ученой степени

25 23 22 20 9 99

25 23 22 20 10 100

10 40 35 10 5 100

В первом массиве выделяется один срединный случай (50-й с обоих концов), определяется его значение и выясняется, таким образом, что медианный уровень образования – 3, или “законченное среднее”. Во втором массиве выделяется два срединных случая (50-й и 51-й с обоих концов), определяется, что каждый принимает одно и то же значение и выясняется, что медиана – опять 3. В третьем [c.399] же массиве срединные случаи включают две категории – “незаконченное среднее” и “законченное среднее”. Здесь медианой является среднее арифметическое между этими величинами, т.е. (2+3)/2=2,5. Поскольку дробные значения не имеют смысла в порядковом измерении, эта цифра просто говорит нам, что середина распределения лежит примерно между 2 и 3.

Любой из нескольких способов измерения дисперсии для порядковых переменных, называемый квантильным рангом, показывает, насколько плотно различные значения группируются вокруг медианы, или опять насколько типична или репрезентативна медиана для распределения в целом.Квантиль – это мера положения внутри распределения. Например, персентиль делит совокупность на 100 равных частей так, что первый персентиль – это такая точка или значение в этой совокупности (считая от меньшего значения вверх), ниже которой находится 1% всех случаев, второй персентиль – такая точка или значение, ниже которой находятся 2% всех признаков, и т. д. Или, используя более знакомый пример, будущий студент колледжа, достигший 85-го персентиля в тесте на эрудицию, дошел до уровня более высокого, чем уровни 85% всех, кто проходил тест. Точно так же дециль делит совокупность на десятки (например, третий дециль – это точка, ниже которой находятся 30% случаев), квантиль – на пятые доли, квартиль – на четвертые. Любой из них может быть использован для определения дисперсии вокруг медианы, хотя децильные и квантильные ранги наиболее часто встречаются в литературе.

Давайте проиллюстрируем эту процедуру на примере квантильных рангов. Квантильный ранг (q) определяется следующим образом:

q = q4q1,

где q4 четвертый квантиль (значение, ниже которого находится 4/5, или 80% всех признаков);

q1 – первый квантиль (значение, ниже которого находится 1/5 или 20% всех признаков).

Чем меньше степень разброса величин между этими двумя точками совокупности, тем плотнее сгруппированы случаи вокруг медианы и тем точнее представляет медиана всю совокупность. В массиве 2 табл. 14.2, например, [c.400] где N=100, можно подсчитать q, определив 81 признак (ниже которого расположено 80% признаков) и 21 признак (ниже которого расположены 20% признаков), начиная наш счет внутри частотного распределения с наименьших значений. Затем мы вычитаем значение 21-го признака из значения 81-го (q=q4q1=4–1=3) и получаем квантильный ранг. В массиве 3 подобные вычисления выделяют квантильный ранг, равный единице (q=3–2=1), показывающий при сравнении, что это распределение лучше представлено своей медианой, равной 2,5, чем второй массив – своей медианой, равной 3. Внимательное изучение этих двух частотных распределений подтвердит обоснованность нашего вывода.

Одна из трудностей интерпретации квантильных рангов состоит в том, что они чрезвычайно чувствительны к изменениям в количестве градаций самой переменной. Чем больше градаций, тем вероятнее большой разброс. Поэтому квантильные ранги не всегда поддаются интерпретации в случаях сравнений переменных с разным количеством градаций. Для переменных же с примерно равным количеством градаций для построчного или постолбцового сравнения значений одной переменной или для какого-либо абсолютного измерения разброса вокруг медианы они вполне подходят. [c.401]